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ABSTRACT

Understanding the dynamic behavior of a software system is one
of the most important and time-consuming tasks for today’s soft-
ware maintainers. In practice, understanding the inner workings
of software requires studying the source code and documentation
and inserting logging code in order to map high-level descriptions
of the program behavior with low-level implementation, i.e., the
source code. Unfortunately, for large codebases and large log files,
such cognitive mapping can be quite challenging. To bridge the
cognitive gap between the source code and detailed models of pro-
gram behavior, we propose a fully automatic approach to present a
semantic abstraction with different levels of functional granularity
from full execution traces. Our approach builds multi-level abstrac-
tions and identifies frequent behaviors at each level based on a
number of execution traces, and then, it labels phases within indi-
vidual execution traces according to the identified major functional
behaviors of the system. To validate our approach, we conducted a
case study on a large-scale subject program, Javac, to demonstrate
the effectiveness of the mining result. Furthermore, the results of a
user study demonstrate that our approach is capable of presenting
users a high-level comprehensible abstraction of execution behav-
ior. Based on a real world subject program the participants in our
user study were able to achieve a mean accuracy of 70%.
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1 INTRODUCTION

With the increasing size and complexity of modern software, com-
prehending the source code has become one of the most expensive
tasks in all phases of software life cycle because software must
be sufficiently understood before it can be properly modified or
enhanced [10, 18]. In practice, understanding dynamic software
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behavior and mapping high-level functionalities with their corre-
sponding implementation details are often necessary for the devel-
opers to efficiently and correctly perform development tasks, such
as adding features, debugging, or optimization [10, 21, 40].

Unfortunately, the complexity of modern software makes it
difficult for developers to build up this cognitive mapping man-
ually, especially given the overwhelmingly large size of source
code. To facilitate these tasks, researchers have proposed many
techniques to help developers identify the high-level functionality
from program’s dynamic behaviors, i.e, comprehending software
executions with their large number of execution events. One ap-
proach (e.g., [34, 34, 39, 42]) is to summarize or aggregate executions
into “phases”, i.e., groups of execution events that constitute func-
tionality behaviors within the execution. Another approach (e.g.,
[8, 17, 31, 34]) is to visualize executions, allowing developers to
observe interesting internal behaviors of the software execution.

These approaches are promising but are limited in a number of
ways that might be improved upon: (1) execution abstractions are
limited to a single level of granularity and thus might not support
well a variety of maintenance tasks that require comprehension at
either a coarse or fine grain, or both (e.g., [34, 39, 42]); (2) executions
events are filtered to support understanding of overall behavior but
may omit important events (e.g., [9, 22, 39]); and (3) execution events
are visualized to allow developers to examine behavior, but rely
on the developer to infer the higher-level functionalities without
guidance on the functionalities (e.g., [8, 31]).

In this work, we present SAGE — a novel approach that (1) iden-
tifies a dictionary of frequent functionalities that occur within
multiple software executions for the software system under inves-
tigation, (2) creates a hierarchical representation of an execution
under investigation using the functionality dictionary, and (3) labels
the hierarchical execution representation comprehensibly.

The hierarchy provides representations of execution functional-
ity across multiple levels of abstraction — for example, at a high-
level, SAGE might describe a behavior as “processInput”, but at a
lower level, it might describe that phase with multiple sub-behaviors
such as “readFile,” “parseTokens,” and “createParseTree.”

Our approach provides two main advantages: (1) the output is a
hierarchical structure that provides the developers a view across
multiple comprehension levels. This view can guide developers in
locating the functionalities of interests; (2) on each level, identified
functionalities are organized sequentially. In this view, all of identi-
fied functionalities are abstracted and presented to include multiple
frequent patterns of behavior to help identify significant behaviors.
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With our prototype implementation of SAGE, we demonstrate
its ability to create hierarchical representations of execution behav-
iors that allow for user investigation of both high-level execution
behavior and lower-level constituent behaviors within high-level
behaviors of interest. Further, we evaluate (1) its ability to reduce
the overwhelming number of events within an execution trace
to a comprehensible number for developers; (2) the efficiency of
building these representations; and (3) the comprehensibility of the
identified functionality phases.

We present an evaluation that includes: (1) a case study that
demonstrates how the approach works for a large program (Javac);
(2) a quantitative evaluation of the size reduction of the execution
trace to a more comprehensible abstraction, with its computational
costs; and (3) a user study that assesses users’ ability to understand
the approach’s generated behavior abstractions. In summary, we
found that SAGE substantially abstracts execution traces to a set
of hierarchical functionalities that allow for both high-level and
low-level developer investigations of execution behavior, in a way
that is comprehensible and meaningful for many behaviors.

The main contributions of this paper are as follows:

e We present our approach for mining execution traces to
identify functionality behaviors (i.e., “execution phases”) for
the software under investigation.

o Based on these identified behaviors, we present a method to
generate a hierarchical abstraction of execution behavior for
an execution under investigation. This abstraction enables
developers to trace and locate the functionalities of interests
and corresponding context.

e With this hierarchical representation of an execution un-
der investigation, we present our approach for abstracting,
modeling, and labeling it for developer inspection and ex-
ploration.

2 MOTIVATION AND CHALLENGES

Software must be sufficiently understood before it can be properly
modified. Especially, for a given development task, developers or
maintainers must map the high-level software functionality with
the source code to gain a sufficient level of understanding. However,
modern software is large in its codebase and its runtime behavior
is complex, which makes bridging the cognitive gap between the
high-level software functionality with low-level implementation
difficult for developers. The expensive cost of manually building
this cognitive analysis naturally motivates the needs of automated
methods for assisting developers in understanding the programs.
Under this circumstance, developers collect execution traces (i.e., a
log of internal execution events) to observe and reason about low-
level software execution by using an execution-trace instrumenter.
Unfortunately, these execution traces often contain millions, or even
billions, of low-level execution events, and their files are often sized
in the gigabytes. Such large trace sizes can limit developer ability
to understand and reason about the software execution behavior.
To assist developers in understanding software execution and re-
duce the cognitive burden of interpreting extremely large execution
traces, researchers have identified that software execution often
includes “phases,” or commonly recurring behaviors that perform
functionalities within the software. Reiss [34] articulates this point:

Software executes in phases. A simple system first does
initialization, then reads input, then processes that input,
and finally writes the result out. Actual systems typically
go through various phases depending on different input
commands and external events, varying processing re-
quirements, and other related factors.

Cornelissen et al. [8] observed execution phases with their Ex-
TRAVIS visualization. They observed that for a program that they
were studying, it contained a number of phases: “(1) an input phase,
(2) a calculation phase, and (3) an output phase,” and moreover
that these phases contained several repeating sub-phases. This ob-
servation by Cornelissen et al. particularly motivates this work
to produce a hierarchical abstraction of an execution trace and its
execution phases, which allows developers to understand behaviors
and their sub-behaviors to assist in their maintenance tasks.

To achieve such a goal, we face three main challenges:

Challenge 1: Information overload. Execution traces are typi-
cally very large—in the millions or billions of events, and file sizes
in the gigabytes. Such large sizes of execution events create difficul-
ties for developers to understand and act upon the data. Moreover,
execution traces are often presented in terms of low-level events
that do not convey much meaning on their own. Hence, techniques
that abstract this detailed information to fewer, higher-level, and
more comprehensible behaviors may be beneficial.

Challenge 2: Behaviors contain sub-behaviors. As observed by
Cornelissen et al. [8], behaviors (i.e., execution phases) contain other
behaviors, and their relationships between higher-level behaviors
and lower-level constituent sub-behaviors are often hierarchical.
As such, much of the prior work in execution-phase detection that
detects phases at only a single level of granularity cannot express
such relationships or allow developers to interactively explore and
dissect phases. Hence, we seek to provide phase detection that is
hierarchical and enables interactive investigation and exploration
of parts of an execution.

Challenge 3: Identifying functionality on demand. Because
software developers are often interested in the software behav-
ior with different granularities for completing various development
tasks [10], identifying functionality phases on demand become chal-
lenging in practice. Multi-level representation can help users to
access any arbitrary area of a trace with support for exploration,
panning, searching focusing, and zooming. Hence, our approach
seeks to provide a hierarchical structure and enable developers to
analyze and explore execution traces.

3 APPROACH

In this section, we introduce our approach for hierarchically ab-
stracting an execution trace and addressing the challenges men-
tioned in Section 2. In Figure 1, we present the framework of our
approach to abstract and label execution-behavior phases. The input
of our approach are execution traces of the subject program con-
taining method-call events, which can be obtained with a dynamic
instrumenter. In our implementation, we employed BLINKY [30] as
the instrumenter to collect execution traces.

As depicted in Figure 1, our approach consists of two primary
stages: (1) data collection and preprocessing, and (2) model building
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Figure 1: The framework for abstracting and labeling execution events, i.e., the model building stage for the SAGE approach

and execution abstraction. In the following subsections, we describe
the major steps in each of these two stages.

3.1 Data Collecting

In our approach, execution traces are obtained using the dynamic
instrumenter, BLINKY [30]. We configured BLINKY to collect method-
invocation event traces. For our purpose, we instrumented the
method-enter events because methods are intended to provide
behavior-granular functionality. This intuition that method invo-
cations (and their invocation sequences) provide a useful source
for our behavior phase detection is mirrored by the work of both
Pradel and Gross [33] and Salah et al. [36], who each found that
method-invocation sequences can represent usage scenarios within
software execution.

Each execution of the instrumented program results in a method-
level trace that consists of a sequence of method invocation events.
Each method invocation event is captured as a triple of a (1) method
ID, (2) method signature, and (3) call depth. For multi-threaded
programs, each thread is analyzed as a separate trace.

3.2 Preliminary Phase Tree Building

The next step of the approach is to reproduce a dynamic call tree
from each method trace. Ammons et al. [2] noted that dynamic call
trees provide a hierarchical abstraction that is the most precise but
space-inefficient data structure to present the calling context of the
execution. As such, our approach uses this data structure as the
basis for further abstraction.

Dynamic call trees were chosen as a basis on which we will
abstract the execution and build our hierarchical execution repre-
sentations because it naturally presents a hierarchical task-based
representation of the execution behaviors that were performed. The
methods themselves abstract the behavior of the entirety of their
called methods. For example, a method readFile () may repeatedly
call readLine(), which may in turn repeatedly call readByte().
In this example, the call to readFile() provides an abstraction of

the functionality and behavior the sequence of readLine() and
readByte () method calls.

Dynamic call trees are composed of ordered nodes, structured by
an edge from each caller to callee method [2]. Given the sequence
of method-invocation events in a trace, along with each method in-
vocation’s call depth, we reverse engineer the calling structure from
the flat sequential trace. The process for recreating the dynamic call
tree from the flat trace is relatively straightforward—we derive the
caller-callee structure by assessing the increases and decreases in
call depth in the method trace. Although relatively straightforward,
we account for situations such as exception handling and the invo-
cation of non-instrumented methods (which may, for example, call
back to instrumented methods). In both cases, the resulting traces
may result in call depths that jump in non-incremental ways.

In Figure 2, we present a simple example to demonstrate a classic
dynamic call tree for a partial execution trace of NANOXML. The
vertical axis represents the call depth. The order of method-enter
events are represented on the horizontal axis. Each node represents
one method-invocation event, and the directed edges represent a
call from a caller method to a called method. We will use this ex-
ample to demonstrate some of the following steps of our approach.

Using the dynamic call tree, we then create a set of “preliminary
phases” to build a “preliminary phase tree” for each execution. A
preliminary phase is a subtree of dynamic method calls of increasing
call depth, and preliminary phases may contain other preliminary
phases. We identify preliminary phases by analyzing the shape of
the dynamic call tree — at locations where there is a local minima
in the call stack depth (i.e., the call stack decreases then immedi-
ately increases), we identify a phase boundary. Figure 3 depicts our
example dynamic call tree from Figure 2, labeled with the identified
phases. Notice that phase P1 includes method calls from scanData
to processSchema, with no sub-phases, because the calling depths
are strictly increasing—this represents that a single behavior is
being performed. The set of all preliminary phase trees are referred
to as the preliminary phase forest.
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3.3 Model Building

After execution traces have been recorded and each of their pre-
liminary phase trees have been created, we learn a set of primary
behaviors exhibited by these traces. This stage of the approach
produces two main outputs: (1) a set of hierarchical execution ab-
stractions for each of the input dynamic call trees, and (2) a reusable
model that can be used to abstract further execution traces. The
model-building stage consists of the following four steps:

(1) Duplicate phase detection: Based on the preliminary phase
forest, we identify duplicate preliminary phases on each level
of the hierarchical structure. In our approach, we create a
global key for the nodes of the preliminary phase trees based
on the level and the method-invocation orderings. The set of
phases outputted in this step are referred to as unique phases.
This step will be further elaborated in Section 3.3.1.

(2) Phase clustering: Some unique phases perform similar func-
tionality by invoking a similar set of methods. Our approach
attempts to cluster the unique phases that are performing
similar functionality. The output of this step will be referred
to as the clustered phases. This step is further elaborated in
Section 3.3.2.

(3) Frequent pattern mining: To reveal functionality units
with different granularities that appear across the executions,
we perform a technique known as frequent pattern mining
(FPM) on each level of the hierarchical structure of clustered
phases. In our approach, we define the mining results as
functionality units of the program. The output of this step
will be referred to as frequent pattern phases. This step is
further elaborated in Section 3.3.3.

(4) Semantic labeling: After we identify the functionality units
from the execution traces, we label these functionalities to
ease comprehensibility for developers. Generally, the method
signatures contain the most important words to describe the
main functionality of the methods (as found by De Lucia
et al. [11]). We use an information retrieval technique on
the method signatures contained in each of frequent pattern
phases. We treat the method signatures as weighted labels for
the frequent pattern phases. This step is further elaborated
in Section 3.3.4.

3.3.1 Duplicate Phase Detection. Because our preliminary tree
building approach processes the execution traces one by one, some
identical preliminary phases may occur multiple times throughout
forest. As shown in Figure 3, two phases, P, and P are identical.

Figure 3: Phase tree of an execution trace

In the figure, we simply show method names, but the approach
actually uses fully qualified method signatures. The identification
of duplicate phases is important in two ways: (1) identifying identi-
cal behavior can help developer understanding within and across
executions, and (2) reducing the set of unique behaviors can make
subsequent steps of the approach more efficient.

To identify duplicate preliminary phases, we create a global key
as the identity for each phase of the forest. In our implementation,
the global key is comprised of: (1) the hierarchical level, i.e., the
distance from the root node to the phase node, and (2) the invoked
method list, ordered by their first invocation in the phase. For
example, a phase that is rooted at hierarchical level 2 that contains
the list of methods (mg,, my,, m¢, my, m¢) would have a global key
of “2:mg,mp,me”.

The motivation for using the order of first invocations of methods
is to treat repeated sequences (e.g., loops of method calls) of varying
lengths to be identified as the same behavior. We can easily take
two phases that each read a file with a sequence of the method calls
to a readLine() method as an example: if these two phases each
read files in the same way, but are reading files of different lengths,
our approach to building the global key will intentionally identify
these two phases as duplicates. Once the global key is generated
for all phases, we recreate the hierarchical phase structure for each
execution using the global keys to represent the phase nodes. That
means, we can replace the phases that have the same global key by
one unique phase.

3.3.2  Phase Clustering. The prior step identified the strictly
identical preliminary phases across the whole forest. However, the
executions may still contain similar behaviors that have only slight
variations on the method invocation profiles. As shown in Figure 3,
P, and Ps read the next tags and processed the XML elements in the
exact same behavior, whereas P; encountered the header element of
XML file that should be processed by the method processSchema.
As such, the main functionalities of P1, P2, and P3—the reading the
next tags and processing the elements—may be considered similar,
although not identical.

To identify the similar phases revealing the similar functional-
ities, we applied agglomerative hierarchical clustering (AHC) [24]
on the unique phases set. In this step, there are three fundamental
parameters: (1) the threshold to stop the agglomerating; (2) the
distance metric, which is used to measure the distance between
clusters; and (3) the linkage type that are used to agglomerate the
nodes.



To measure the distance between phases, we use the Jaccard
Distance, which is widely used for comparing the similarity and
diversity of data sets, to measure the similarity between invoked
methods among the unique phases. We defined Jaccard Distance
in Equation 1, in which, P; and P; denote the ith and jth phase,
and the M; and M; denote the invoked method set in the P; and
P;j respectively. The clustering process iteratively clusters the two
most similar phases, as measured by the Jaccard distance, until a
maximum distance threshold maxDis is reached.

|M iNM j|

|M; U M;|

For example, in Figure 3, there are two methods, i.e, scanData
and readNextTag, are invoked in both P; and Ps, thus, the size of
the intersection of My and M, is 2. And as we can see, there are
four methods are invoked in P; or P, thus, the size of the union of
M and Mj is 4. So, the DS(P1,P;) =1 - 2 = 0.5.

As a result of the clustering, we mark the unique phases with
corresponding cluster identifiers. The clustered phases are referred
to as clustered phases, and the resulting phase trees with the clus-
tered phases are referred to as clustered phase trees. Moreover, as
a final stage of producing the clustered phase trees, we aggregate
sequentially contiguous phases that share the same cluster identi-
fiers into one larger clustered phase to further abstract a series of
similar behavior into a single larger and longer-running behavior.

DS(P;, Pj) =1 1)

3.3.3  Frequent Pattern Mining. Because developers often invoke
methods in patterns to implement functionalities (as described in
[1, 6, 38]), our approach reveals the program’s functionalities by
employing a frequent pattern mining technique to identify such
functional units.

Frequent pattern mining is a family of techniques that seek to
efficiently identify frequent patterns within datasets. A particular
frequent pattern mining technique is “sequential pattern mining”
(SPAM) [4], which is an efficient technique created for discovering
frequent sequential patterns from very large transactional databases.
The algorithm is especially efficient when the sequential patterns in
the database are very long [4]. SPAM employs a depth-first search
strategy to generate candidate sequences and implements an a-
priori-based pruning mechanism to reduce the search space.

We utilized SPAM to identify and aggregate frequent sequences
of behavior that we observed in and across the clustered phase trees.
We apply SPAM at each level of the clustered phase trees to identify
our highest-level abstraction of execution functionality. For exam-
ple, if we observe that many executions contain a frequent behavior
sequence, such as “isEndOfFile, readChar, appendToList,” we can
identify that this sequence represents a functionality that appears to
be important for these executions. As such, we can further abstract
our phase trees to present these higher-level functionalities.

SPAM utilizes some key parameters that influence the effective-
ness and efficiency of our mining technique. The first one is the
minimum support value, which we denote as minSup. In frequent pat-
tern mining techniques, support is an indication of how frequently
the pattern appears in the database. Formally, as shown in Equa-
tion 2, the support value of pattern P with respect to transaction set
T is defined as the proportion of transactions t in the database that
contains pattern P. minSup assists in identifying the patterns with

frequencies higher than the threshold. The second maximum gap
between the items of the patterns, denoted as maxGap, specifies if
gaps are allowed in frequent patterns and the allowed size of those
gaps. For example, if maxGap is set to 1, no item is allowed, i.e., each
consecutive item of a pattern must appear strictly consecutively in
a sequence. If maxGap is set to N, a gap of N — 1 items is allowed
between two consecutive items of a pattern.

|{t € T; Pattern; C T}| @
IT|

We found maxDis = 0.2, minSup = 0.3, maxGap = 1 to provide a
well balanced level of abstraction, and thus use these for our studies
and experiments in the next section.

Finally, we create a hierarchy of the frequent-pattern-mined
phases for each hierarchy level. At each level of the hierarchy, we
replace consecutive sequences of repeated frequent-pattern-mined
phases with a single phase entity, and hence further reduce the
number of phases.

support(Pattern;) =

3.3.4 Semantic Labeling. One of the challenges of assisting de-
velopers in understanding the software behavior from execution
traces is to present the functionality units in a comprehensible way.
We accomplish this by creating and applying labels to the final
phases in the hierarchy. Many prior works (e.g., [11, 14, 25, 27])
have found that source code contains valuable and meaningful clues
for describing functionalities. Our approach utilizes method names
as labels that succinctly describe the developers’ intended behavior
for the encapsulated functionality. De Lucia et al. [11] found that
method signatures provide useful indication of the functionality
provided by the methods.

In large programs, each of the high-level frequent-pattern phases
may contain hundreds of methods. Simply providing a list of all
constituent method names would produce a set of labels that could
make it difficult for developers to identify the most relevant oper-
ations. As such, we seek to provide the most relevant and distin-
guishing terms for our phase labels. In order to do so, we adopt the
TF-IDF (term frequency-inverse document frequency) [37] metric
as the weight of our labels. Our approach presents the most highly
weighted labels to describe the phases.

In the implementation, we treat the method signatures as the
terms and the phases as the documents. In addition, to penalize the
utility methods that have a very high frequency in the frequent
pattern phases, we adopt log normalization to calculate the term-
frequency weight (¢f). For the inverse-document frequency (idf), we
adopt the inverse-document-frequency-smooth weighting scheme.
The final term frequency-inverse document frequency computation
equation is defined in Equation 3. After we calculate the weight for
each of the labels, we sort them and extract the top 20 terms as the
final label set for each frequent pattern phase.

N
tidf; ¢ = (1 + log(tf; 2)) - log(1 + 7 3)
t

3.4 Execution Abstraction

Once the SAGE approach completes the model building stage of
all prior steps for any set of training executions, a model of all
behaviors is available for abstracting any execution (whether seen
before or new) so it can be provided to a developer for inspection



Level 1 Main Compile
Level 3 m Compile Close
Level 5 Qeticns ParseFiles | stoplfError | enterTrees process- compile2
OptionKind P Annotations P
_____________ Level 6 K B Level~6\""‘--._~_
Token/Parse| Append |read/accept Scope | attribute Flow Close |[visitUndetVar Flush reiclicl)r;gex

Figure 4: Hierarchical execution phase abstraction for an execution of Javac

and comprehension. For the execution under inspection, the phase
detection step is first performed, and all subsequent steps are per-
formed by utilizing the set of phases identified in the trained model
of mined phases. Moreover, the semantic labels are also precom-
puted in the model building stage. It should be noted that the model
building stage of the SAGE approach can be performed infrequently
when developer time is not needed and can be trained with a test
suite — for example, during an overnight build. The individual
execution abstraction is a relatively efficient process, and can be
performed quickly when an execution needs to be evaluated. Fig-
ure 4 provides a visual representation of our output. Section 4.2
provides a quantitative evaluation that includes model building-
and application-stage timings.

4 EVALUATION

We implemented our approach in a tool, called SAGE, to evaluate
the effectiveness of our approach. With SAGE, we conducted three
studies. First, we present a case study to demonstrate the approach
and the way in which it is capable of abstracting a large execution
trace into a hierarchical structure. In this case study, we present
the horizontal view as well as the vertical view contained in the
hierarchical structure. Next, we present a quantitative evaluation
on three real programs to assess the benefits and costs of our ap-
proach on abstracting functionality phases for those subjects and
executions. Finally, we present a user study to evaluate the ability
of our approach to generate comprehensible functionality phases
from execution traces.

These evaluations are motivated by three research questions:
RQ1: To what extent does our approach alleviate the information-
overload challenge?

Does the hierarchical phase abstraction provide substantially
different levels of granularities of behavior?

To what extent are the labeled phases of our approach com-
prehensible for developers?

RQ2:

RQ3:

4.1

In this case study we applied our approach on JAvAc, an open-source
Java compiler, to demonstrate our approach. We chose JAvac as a
subject program for this case study because the functionality of a
compiler is relatively familiar to software-engineering researchers
with a relatively understood and well defined pipeline of phases.
To train the model, we used the 19 test cases provided by the
Open JDK project! that target the “Warning,” “Assert,” and “Enum”

Case Study on Javac

!http://openjdk java.net/

features. The BLINKY instrumenter [30] was used to collect the
method call event traces for these test cases. The combined size of
the 19 trace files was 995 megabytes. In total, the trace files con-
tained more than 20 million trace events—far too large for developer
comprehension.

Using this trained model, we now demonstrate the output for an
execution that we wish to abstract. The test case Enum2. javais a
file for Javac to compile. We produced the execution trace for Javac
when compiling the Enum2. java source-code file. The execution
trace for this execution contains 1,146,572 events.

Figure 4 depicts three complete levels of our phase hierarchy and
one partial level for some sub-phases for Javac on the Enum2. java
test-case execution. In this figure, we visualize the identified phases
for Levels 1, 3, and 5 (and partial Level 6) as vertically stacked layers.
We omitted level 2 and 4, because they were similar to Level 1 and
3 respectively, and due to limited space in the paper. Each rectangle
in each level represents an execution phase, and the width of each
phase indicates the length of that phase from the execution trace.
In this figure, we included only the top method-name label due to
space limitations.

Our hierarchical structure presents users both horizontal and
vertical views of a large trace. The horizontal view enables users to
analyze all events and their relationship on the same level, including
going back and forth in the trace, inspecting events, and processing
the data for understanding the trace based on one abstraction level.
The vertical view enables users to analyze and locate software
behaviors with different functionality granularities. Based on these
two views, our approach alleviates the third challenge we discussed
in the Section 2.

We observe that the Javac execution for compiling Enum2. java
is unsurprisingly dominated by a “compile” phase in the top, most-
abstracted level. However, when we look into the deeper levels
of the hierarchy, we observe that the “compile” phase can be de-
composed into sub-phases that account for constituent behaviors.
Many of these phases have labels that are interpretable by devel-
opers without in depth knowledge of Javac, such as “parseFiles,”
whereas others would probably be more meaningful for the devel-
opers of Javac (for whom we intend the visualization to be useful),
such as “visitUndetVar” An interactive visualization of the output
can be found on our website 2. Overall, we observe a drastic ab-
straction of the trace from over 1 million events in the execution

Zhttps://spideruci.github.io/sagevis-demo/
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Table 1: Size abstraction and time cost for each step of the model building procedure

. Phase Detection Duplicate Detection Clustering Pattern Mining Labeling
Projects [Traces| [Events| [Methods| time (s)  |phases| | time(s) |phases| | time(s) |phases| | time(s) |phases| time (s)
NanoXML 235 247,471 100 3.5 225,430 0.1 786 0.5 160 50.8 47 1.7
Javac 19 22,439,965 3919 247.8 51,878 0.0 1605 20.1 650 428.9 57 1.0
JEDIT 18 10,129,771 5431 143.6 692,286 0.4 17,088 1994.3 3838 5846.0 84 20.7

trace to only 10 functionality phases at Level 5 of our hierarchical
phase model.

4.2 Quantitative Evaluation

To evaluate the computational efficiency of SAGE, as well as its ef-
fectiveness at reducing the information overload of large execution
traces, we conducted a quantitative evaluation. For this evaluation,
we used three software subjects: Javac, JEpit, and NANOXML. For
each of these three software subjects, we computed the hierarchical
phase model for all training test-case executions and report the
reduction in model size and time costs for each step in our model
building phase. Then, we also provided average model sizes at each
hierarchical level for execution abstraction during the application
stage of our approach, as well as the time cost for abstracting an
execution subsequent to the building of the trained model. These
experiments were performed on a 1600MHz CPU with 8 cores, with
64-bit Ubuntu 14.04, with 12GB of RAM.

4.2.1 Model Building Results. We present our results for the
model building stage of our approach for these three subjects in
Table 1. By examining the results in Table 1, we observe that despite
the fact that NANOXML is provided with more execution traces
(235 versus 19 and 18), the total size of the traces are much smaller,
which may not be surprising given the smaller size of the subject
and the task it performs. Javac and JEDIT have a relatively small
number of execution traces, but their program and execution size
is much larger in comparison to NANoXML.

We can observe that the phase-detection step for NanoXML
requires only 3.5 seconds in comparison to Javac and JEprT, which
require 248 and 144 seconds, respectively, which is unsurprising
given the differences in trace sizes for these subjects. For the same
reason, the number of phases for JEDIT is almost 41 times as that of
NanoXML, and the time cost of JEDIT’s phase detection is 41 times
as that of NANOXML. As a result, the phase detection step identified
225430, 51878, and 692286 preliminary phases in the top-8 levels of
NaNoXML, Javac, and JEDIT, respectively.

Next, we observe that the duplicate-detection step is quite fast —
in all cases requiring less than a second. This efficiency is due to the
use of the global key, which is then used as a hash for quick look-up.
Despite the efficient computation, this step substantially reduces
the number of phases, which results in the number of phases being
reduced to 0.03%, 3.10%, and 2.47% of the preliminary phases, for
NanoXML, Javac, and JEDIT, respectively.

After the duplicate detection step, the clustering technique will
further reduce the number of phases. However, even though this
technique is capable of substantially reducing the number of phases,
the time cost of this step is relatively expensive in comparison to
the previous two steps. This expense is especially noticed for JEDIT,
which requires around 33 minutes to cluster the unique phases for
the model building stage.

For the frequent pattern mining step, we observe that this step
is the most time-consuming of the model building procedure. JEpIT
requires around 98 minutes to complete the mining, however, this
step has successfully reduced the large event trace into a manage-
able size (47-84 phases).

It is worth noting that the model building process can be per-
formed “offline”—the computational costs can be incurred during
off-hours (e.g., an overnight build) and can be trained infrequently.
As long as the method signatures do not change drastically, the
model can be used for subsequent builds.

4.2.2  Application Results. In Table 2, we present our results
for applying our SAGE approach on execution traces for creating
the hierarchical phase abstraction. In all columns, we present the
average results for each of the executions that we abstracted. In
addition, we depict the reduction in the number of final phases for
each level of the hierarchical abstraction model in Figure 5.

The “time” column of Table 2 shows the average time cost of ab-
stracting new execution traces, which is quite efficient in practice—
requiring an average time of 13 seconds or less. The reason for this
efficiency is twofold: (1) the model building procedure is an offline
process, which can be done at any time; and (2) after the model is
built, the time cost of labeling a new execution trace consists of
only three steps: phase detection, duplicate detection, and labeling.
As discussed in the model building results, the efficiency bottleneck
of the approach is in the steps of clustering and pattern mining,
which consume more than 95% of the total time cost.

Based on the Table 2, it is clear that the top level of our hier-
archical structure is capable of highly abstracting the execution
traces: the NANOXML execution abstractions contain an average
of 3.2 phases, the JAvAcC execution abstractions contain an aver-
age of 1.7 phases, and the JEDIT execution abstractions contain an
average of 21.1 phases. Figure 5 graphically depicts the reduction
in execution abstraction from the full execution trace (drawn in
blue) and the number of execution phases at each of the top eight
hierarchical levels. This figure is drawn in log scale to enable the
final average number of phases to be visible in the same plot as the
execution trace size. Note that the execution trace size is multiple
orders of magnitude larger than all studied levels of the hierarchical
execution phase model.

4.3 User Study

To evaluate the degree to which our approach provides compre-
hensible meanings of actual behavior of execution phases, we con-
ducted a user study. Because understanding the software program
is expensive for developers but critical for software development,
automatically presenting comprehensible high-level functionality
phases from execution traces for developers to reduce this cost is
helpful for various software engineering tasks. The goal of this
study was to determine whether our approach can build up the cog-
nitive mapping between the high-level software behavior and the



Table 2: Average number of phases at each level and total time cost for execution abstraction

Project |trace events| Level time
1 2 3 4 5 6 7 8
NanoXML 1053 3.2 5.5 7.9 8.6 13.0 15.7 19.6 26.5 0 s
Javac 1,181,050 1.7 2.5 2.5 3.8 7.1 8.1 25.5 86.8 | 13 s
JEpIT 562,765 21.1 | 99.1 | 424.4 | 729.1 | 1392.8 | 2182.1 | 3547.7 | 5317.8 9.1s
7 7 7
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Figure 5: Trace size (in blue) and average number of phases at each top-8 levels of the hierarchy (in red). Note log scale.

low-level implementation. Thus, we evaluate the comprehensibility
of the labeled phases with a number of participants.

For this study, we used JEDIT as our subject program because
it allowed us to invoke high-level functionalities that any partic-
ipants should understand, despite being unaware of how it was
implemented in code.

The study setup involves the following steps. We identified nine
typical functionalities of the editor software to represent the high-
level functionalities, which are “New File,” “Change Font,” “Word
Count,” “Close&Exit,” “KeywordHighlight,” “Open File,” “Typing,’
“Search,” and “Indent” And then, we executed the instrumented
JEDIT with a combination of several operations drawn from the
basic functionalities that we defined. Thus, each of these compound-
functionality executions simulate the real usage scenarios, and each
of them contains multiple basic functionalities. For example, one
execution may include “Open File,” then "Typing,” then “Change
Font,” then “Close&Exit”

We totally produced 18 compound-functionality execution traces
and input all of them into SAGE to produce the labeled phases. Based
on our knowledge of the basic functionalities that we invoked
to create the execution traces and our familiarity with JEpIT, we
manually labeled the ground truth for each phase of the execution.

Based on this information, we designed each of the phases into a
multiple-choice question. Each question gave one phase identified
by SAGE, presented as the textual labels produced by the Semantic
Labeling step, and five options to describe the high-level function-
ality of this phase. The five options contain one correct option
(i.e., the ground truth), three wrong choices that were randomly se-
lected from the nine high-level functionalities, plus one “Unknown”
option.> We recruited 28 computer science graduate students as
participants. All participants had at least one year of industrial in-
ternship experience. None of the participants had previously used
JEDIT nor read its source code. Each participant was required to
label 15 randomly selected questions within 30 minutes.

3Sample questions can be found here: https:/spideruci.github.io/sagevis-demo/
questionnaire

Table 3: The user study results for JEdit

Functionality |Questions| |Correct| Accuracy
New File 56 46 0.82
Change Font 28 21 0.75
Word Count 56 28 0.50
Close&Exit 70 56 0.80
Keyword Highlight 28 11 0.39
Open File 28 22 0.79
Typing 70 52 0.74
Search 56 36 0.64
Indent 28 24 0.86
Total 420 296 0.70

In Table 3, we present the comprehension accuracy of each of
the basic functionalities. In this table, the first, second, and third
columns represent the functionality studied, the number of re-
sponses per functionality, and the number of correct responses,
respectively. The fourth column represents the accuracy. Based on
these results, we observe that the accuracy values range widely, ie.,
from 0.39 to 0.86, and the average accuracy is 0.70.

We further investigated the results by talking with some of the
participants face to face. Overall, the participants stated that they
thought the labels of “New File,” “Close&Exit,” “Open File,” and
“Indent” functionalities were for the most part clear and comprehen-
sible. They observed that the top-5 labels of the identified phases
contained the keywords revealing the functionality, such as “New-
File,” “Close,” “Open,” and “shiftIndentRight. For the relatively low
accuracy of the “Keyword Highlight” and “Word Count” functionali-
ties, we found the most meaningful label of the “Keyword Highlight”
functionality is the “KeywordMap” However, we discovered that
many of the participants did not know the meaning of this term, so
they chose the “Unknown” option as the answer. As for the “Word
Count” functionality, we found that its representative labels were
“showWordCountDialog” and “doWordCount,” but those labels had
a relatively low TF-IDF value and were thus not ranked highly
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among the labels (ranked 13 and 14, out of 15 labels). As such, the
participants failed to notice them.

5 DISCUSSION

In this section, we discuss the evaluation results and answer the
three research questions introduced in Section 4.

Addressing Information Overload. In order to address research
question RQ1, we looked at if our approach was successful in
abstracting the overwhelming amount of information presented
in the execution trace, thus reducing the information overload a
developer would face if attempting to understand an execution trace.
In Table 1 we found that the number of meaningful execution events
was reduced in each step during the model building stage of the
approach. Moreover, when processing an execution for developer
inspection (results shown in Table 2), we found multiple orders of
magnitude reduction in trace sizes, regardless of subject program
and hierarchical level for the top-8 levels. As such, we posit that the
approach substantially alleviates the information-overload difficulty
for developer comprehension of execution traces.

Addressing Behavior Subsumption. In order to address research
question RQ2, we observe the execution behavior phases in the
JAvaAc case study, as well as differences in the number of phases
found at each of the top-8 hierarchical levels of Table 2 and in
Figure 5. In practice, different maintenance tasks require different
understandings of the program. As shown in the Javac case study,
SAGE is able to build up the hierarchical structure and present the
comprehensible functionality units at multiple levels of granular-
ity. The top level of the JavAC’s hierarchical structure presents an
overview of the compiling procedure, which consists of only two
highly abstract functionality units. The labels in the top level are
not descriptive enough to describe all of its functionalities. How-
ever, when exploring deeper in the hierarchy, its sub-behaviors are
revealed.

In the results of the Quantitative Study (Section 4.2), in Table 2
and Figure 5, we see the average number of execution phases varies
substantially from Level 1 to Level 8. For NANOXML, the average
number of identified behavior phases at Level 1 is 3.2, whereas the
average number of behavior phases at Level 8 is 26.5. For JavAc,
the average number of identified behavior phases at Level 1 is 1.7,
whereas the average number of behavior phases at Level 8 is 86.8.
For JEDIT, the average number of behavior phases at Level 1 is 21.1,
whereas the average number of behavior phases at Level 8 is 5317.8.

As such, based on both the case study and the quantitative results,
we see a substantial difference of levels of abstraction for behaviors
and their sub-behaviors at the varying levels of the hierarchy, which
would allow developers to investigate and explore features and
functionalities to support their maintenance tasks.

Addressing Comprehensibility of Execution Traces. In order to
address RQ3, we need to determine if the approach can help de-
velopers understand the executed behaviors based on the labels
provided by the approach. In the user study, we demonstrated that
the labeled phases enabled developers to comprehend the behaviors
of the execution. For 6 out of the 9 studied functionalities, the users
achieved accuracy scores of 70% or greater. Moreover, across all 9
studied functionalities, users achieved an overall accuracy of 70%.

Hence, we posit that the approach assists with the comprehensi-
bility of understanding execution trace events; however, for some
behaviors, the approach produced better results than for others,
and thus there may be room for future improvement.

6 THREATS TO VALIDITY

In terms of threats to validity, we cannot claim that our results
will generalize to all programs, all traces, and all programming
languages. Our evaluations were conducted on three programs that
were all written in Java. Although SAGE is not language-specific
to Java, it is widely known that Java programs often are written
with more descriptive method names than programs written in
languages such as C. Because the labels applied to the execution
phases are based on method names, more descriptive method names
will likely produce better comprehension among users, however
this is true with or without such tool support.

Another possible threat to validity is that the activities and func-
tionalities identified in the user study may not be representative
of those that would be of interest to actual users conducting main-
tenance tasks. To address this threat, we designed the user study
based on the widely used open source text editor and selected the
typical features of this kind of program.

Similarly, another threat to validity is that the participants in-
volved in the experiment may not be representative of general
developers. To address this threat, we employed the senior gradu-
ate students with at least one year industrial internship experience.
Moreover, none of our participants had any knowledge of the imple-
mentation of the subject program, which provided some assurance
that such knowledge did not influence their choices. However, by
controlling for such an external influence, the participants may
have less implementation knowledge than the developers and main-
tainers that we envision to utilize such a system in practice.

7 RELATED WORK

Various researchers have proposed different ways to help develop-
ers efficiently gain a better understanding of the program’s behav-
ior via automatically mapping the high-level functionalities with
source code based on program execution traces.

Pattern Mining for Program Comprehension. Because pattern
mining techniques can aggregate trace events, researchers employ
them to provide a high-level model of a program execution and
ease its comprehension [3, 5, 16, 19, 20, 29, 32].

Fadel et al. [19] employed pattern matching techniques to ag-
gregate events of execution traces of Linux kernel. They focused
on identifying the entry and exit event pairs to form functional
phases, such as function calls, system calls or interrupts. Jivan et
al. [16] tracked similar execution patterns to generate high-level
generic patterns. Their approach employed these patterns to save
the storage and computation for the analysis of multi-core systems.
Benomar et al. [5] presented a search-based method to identify the
feature-level patterns from execution traces. Their method is able
to form a set of phases that minimizes coupling while maximizing
cohesion. To identify features from execution traces for improving
program comprehension, Asadi et al. [3] proposed a search-based
approach to identify conceptually cohesive segments in execution
traces. Medini et al. [29] presented a dynamic-programming-based
algorithm to improve the efficiency of feature localization.



All of these techniques focused on identifying high-level patterns
over only a single execution trace. In contrast, our approach ap-
plies frequent pattern mining over multiple execution traces to find
patterns that exist among multiple executions. Moreover, our ap-
proach provides multiple levels of abstraction to allow exploration
and comprehension at different levels of granularity.

Trace Reduction and Abstraction Techniques. Due to the mas-
sive size of execution traces, scalability issues inevitably arise. To
improve the comprehensibility of execution traces, researchers have
proposed many trace compression and abstraction techniques to
reduce their size. Chan et al. [7] used sampling to reduce the size
of the traces. Watanabe et al. [39] and Zaidman et al. [42] both pro-
pose abstract execution traces. The former proposed to find phases
within executions based on the creation and destruction of objects
in object-oriented programs. The latter used a heuristic approach
to divide the trace into recurring event clusters. Reiss et al. [35]
encoded repeating events to reduce the size of the execution traces.
Additionally, Reiss [34] abstracted execution traces comparing parts
of the trace with certain intervals, if they are similar they would be
part of the same phase, if not, a new phase was found. However,
each approach provides only one level of granularity for the de-
velopers. In contrast, we do not omit execution information (i.e.,
sample), and we add abstractions to the detailed execution trace —
at multiple levels of granularity to assist developer inspection and
exploration of execution behaviors.

Hamou-Lhadj and Lethbridge [23] compressed the execution
traces while retaining the full call tree. However, in our approach
we identify similar recurring patterns thus reducing and abstracting
the execution trace for comprehension.

A different approach is to use metrics-based filters to reduce
the size of an execution trace. Hamou-Lhadj et al. [22] filtered out
the utility components based on fan-in/fan-out to only keep the
high-level components, resulting in a smaller execution trace. Also
Cornelissen et al. [9] showed that limiting the stack depth can be
an effective way to reduce the size of the execution trace. In these
approaches parts of the execution are filtered out. In our approach
we keep all events and use them to inform our abstractions.

Multi-level Trace Abstraction. Multi-level abstractions of exe-
cutions enable developers to access arbitrary areas of the execu-
tion [18]. Thus, researchers have sought to build multi-level ab-
stractions to assist developers in analyzing and comprehending
execution traces. Yang et al. [41] build a hierarchical tree that rep-
resents low-level dynamic control flow. The goal of this work is to
improve the efficiency of path tracing and path querying, whereas
with our approach analyzes and abstracts method invocations to
assist with developer comprehension.

Jivan et al. [15, 17] visualized execution traces in a hierarchical
way also using a timeline. By zooming in the user can zoom in on
the current level, and when zooming in lower levels will be pre-
sented. This work focuses on a visualization that can be applied to
unspecified trace abstraction approaches. However, in earlier work
Jivan et al. [16] provided such a trace abstraction technique target-
ing kernel-level events (e.g., system calls, disk usage). In contrast,
our approach operates on higher-level events such as application-
level methods, and thus are likely closer to the level of functionality
that application developers would understand.

Lo et al. [26] mined an execution trace in a hierarchical fashion
to find different levels of granularity and visualize those in live
sequence charts to the user. However, the hierarchical structure is
not based on detecting phases and its sub-phases, but it is derived
from the package structure and live sequence charts. In addition,
Medini et al. [28] presents SCAN, an automated tool that is able
to automatically divide executions and label execution segments.
SCAN uses Formal Concept Analysis (FCA) to form the lattice
structures over segments of execution traces. The lattice structure
maintains the relations between the execution segments of the
same execution to find common execution patterns. In contrast,
our approach finds commonalities across multiple executions to
find behaviors that may be infrequent within an execution but
frequent among executions. De Pauw et al. [12, 13, 31] visualizes
patterns in the executions and present them in a more compact way
by clustering recurrent patterns together. Our approach also finds
recurrent patterns, but provide further abstraction of the abstraction
trace to more compact and comprehensible representations.

8 CONCLUSION

In this paper, we presented SAGE, an approach that creates a hierar-
chical abstraction and multiple levels of granularity of an execution
trace for developer inspection, exploration, and comprehension.
The approach is composed of a model building stage and an ap-
plication stage. The model building stage can be informed by any
number of executions (typically automated test cases). The applica-
tion stage can be initiated by a developer and their execution trace
can be abstracted and labeled within seconds.

We provide an evaluation that consists of a case-study demon-
stration, a quantitative evaluation of the computational costs and
size reduction of execution traces, and a user study that assessed
the understanding of execution behaviors. The case study on the
Javac compiler demonstrates SAGE’s ability to reveal the primary
behavior phases within a large execution trace and its ability to
provide behavior information at multiple levels of granularity. The
quantitative evaluation revealed two things: (1) the approach is suc-
cessful at substantially abstracting the execution trace and reducing
the amount of data to be inspected by the developer to understand
execution behavior; and (2) the model building costs are not incon-
sequential, but these costs can be incurred infrequently and offline.
Moreover, the application to execution traces under investigation
occurs efficiently—for all studied cases, in less than a second. Finally,
the user study showed that for most functionalities, the users were
able to achieve a 70% or greater accuracy; for a few functionalities,
there is room for improvement in future work.

Additionally, future work can address other system features.
Although our approach is applicable to multi-threaded programs
(by analyzing each thread independently), further gains may be
possible by analyzing correlations and communications between
threads to identify phases. Finally, we will be evaluating SAGE on
more and larger software subjects.
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