
Global Overviews of Granular Test Coverage with
Matrix Visualizations

Kaj Dreef
University of California, Irvine

kdreef@uci.edu

Vijay Krishna Palepu†
Microsoft

Vijay.Palepu@microsoft.com

James A. Jones
University of California, Irvine

jajones@uci.edu

Abstract—Existing IDE-based tools that are available to devel-
opers make understanding software testing difficult for a software
system, for both granular tasks (e.g., answering questions such
as, “which test cases execute this method?”) and global tasks
(e.g., answering questions such as, “what is the proportion of
unit tests to system tests?”). IDE-based tools typically support
local, file-based views of a project’s test suite, and rarely offer a
global overview. Global overviews can provide a larger context
for a method’s execution by test cases; help identify other
similar, or related methods; and even reveal similarity between
individual tests. This work approaches such challenges with a
novel, interactive, matrix-based visual interface that provides a
global overview of a software project’s test suite, specifically in
the context of the methods available in the project’s codebase.
Through a series of interactive functions to sort, filter, query,
and explore a test-matrix visualization, we demonstrate how
developers can effectively answer questions about their project’s
test suite, and the code executed by such tests. Our evaluations,
performed on four real-world software systems, show that the
interactive visualization assisted developers to answer questions
about software tests and the code they execute. Further, the
visualization consistently outperforms traditional development
tools, both in accuracy and time taken to complete software-
engineering tasks.

Index Terms—Software Testing, Visualization, Software Com-
prehension, Software Test Comprehension

I. INTRODUCTION

Consider some questions that engineers routinely ask of
their test suite: “What code is tested?”; “Which components
are untested or under-tested?”; “Does a test focus on specific
methods, or the system as a whole?”; “Which methods do
the failing tests execute?”; and “Are two tests executing the
same methods, or testing the same/similar functionality?” Such
questions and needs by developers to understand their test
suites are validated by several prior studies (e.g., [1], [2],
[3], [4], [5], [6]). Such questions speak to: (a) how the tests
themselves are organized, i.e., the “form” of the test suite, and
(b) the specific components and aspects of the product that the
tests are designed to execute and verify, i.e., the “function” of
the tests.

Questions about the “form” of a test suite often require a
global, or overarching, understanding of the entire suite. These
questions help identify the existing or potential organization of
a test suite. The tests may be organized in a number of ways.

†The opinions expressed in this publication are those of the author. They do
not purport to reflect the opinions or views of Microsoft.

For example, tests can be organized by results: passing and
failing. Or, tests can be organized into clusters, where each
cluster represents a product behavior or functionality to be
verified. And, perhaps a more common organization found in
real-world test suites is to differentiate unit, integration, and
system tests. In such cases, tests are organized into compo-
nents that mirror the packages and methods that are directly
verified by their respective tests. Organizing tests by different
criteria may reveal different aspects of the suite as a whole,
and help engineers navigate and understand their test suites.
For instance, when organizing tests as unit/integration/system
tests, an engineer can easily identify the batch of tests that
directly test a method that the engineer is trying to refactor or
modify. Similarly, when an engineering manager is trying to
assess a product’s testing effort, it can be useful to organize
the tests by the tests’ coverage (increasing to decreasing), or
cluster them by the product behaviors they are trying to verify.

Unlike global overviews, the “function” of tests require a
more localized consideration. A test’s “function” pertains to
questions about a desired behavior that the test is verifying, or
the multiple methods and lines that it executes. Such questions
help in evaluating the efficacy of a specific test. Conversely,
engineers may also want to understand if, or how, a specific
method is executed by multiple tests (perhaps to be selective
about which subset of tests they want to re-run).

Indeed, questions about the global form of an entire test
suite, and the localized function of individual tests are related,
often inextricably. For instance, when asking, “which tests
are executing my code?” it can be useful to know if those
are unit, integration, or system tests; or which behavior such
tests are verifying. Similarly, organizing an entire test suite
by code coverage may actually highlight a specific method or
component that remains entirely untested. As such, revealing
the global form and the localized function of software tests
in a unified way may reveal qualities that are beyond each
individually.

In this work, we visualize software test-execution data in
an interactive matrix visualization that we call MORPHEUS
(see Figure 1) to support developer understanding, querying,
discovery, and exploration of their test suites. MORPHEUS
presents engineers with global overviews of their test suites
in a visualization that captures granular data about a test
suite’s execution, to reveal patterns in the test suites and their
executions. To seamlessly explore localized views of specific



tests within global overviews, MORPHEUS enables user-driven
interactions. Such interactions allow engineers to quickly filter
test data in the visualization to a subset of tests and methods
within a software project. Engineers would also be able to re-
organize the data (tests and methods) to reveal patterns, both
in local and global views.

The main contributions of this work are:
1) A novel application of the matrix-styled representation

for presenting granular test execution data for a software
project’s test suite in global overviews;

2) A series of interaction capabilities, atop the matrix-based
global overviews, to seamlessly explore a software test
suite and answer questions about specific software tests
and methods;

3) An open-sourced implementation of MORPHEUS and
interactive demo [7] that supports Java programs and test
suites written using JUnit or TestNG.

4) An evaluation of MORPHEUS when answering questions
about test suites in real-world software projects, along
with a replication package [7].

II. MOTIVATING EXAMPLES

Prior research studies have found that developers want
better tools to understand, write, and query their test suites.
Torkar and Mankefors [6] conducted a survey of 225 software
developers and found, “One thing was consistent with all
developers. They all wanted better tools for writing tests
cases, especially when the code had been written by someone
else.” and “They, simply put, wanted some statistics on how
well their tests were written and how well they tested a
given function, class or code snippet, i.e. code coverage.”
Rafi et al. [2] also conducted a study of software engineers
that elicited 115 responses. One of their findings was that
“Test automation needs at least as much maintenance as the
developed software with regards to the Technical Debt.” And,
several other research studies have found that developers have
needs for understanding and answering questions about their
test suites (e.g., [1], [3], [4], [5]).

As a concrete example, consider the following question that
a developer may ask about their test suite: “what test cases
execute a specific method, either directly or indirectly?” The
point of this question is to determine exactly which test cases
execute a given method, whether the method is called directly
from a test case, or it is called indirectly, by calling some chain
of other methods, which then calls our given method. This is
not an unreasonable or far-fetched question: we may want to
determine the degree to which a given method has been tested.
Simple coverage tools can answer whether or not a method
was executed, but not by which (or how many) test cases. A
profiling tool may answer how many times the method was
invoked, but does not distinguish between “invoked N times
in a loop by a single method” versus “invoked once by N
methods.” And, searching the test code will only reveal the
test cases that called the method directly.

As an informal feasibility study, we asked three developers
with 9, 12, and 24 years of Java-development experience

this question. All three developers agreed that this was a
useful question and expressed surprise that such a question
is so simple and that it was not immediately obvious how
to answer it. Before we reveal their answers, perhaps you,
dear reader, can attempt to think of how you would solve
this problem, using your own development tools. Here are the
ideas that they came up with, often after hours of reflection
and brainstorming:

1) Put print statements at the beginning of all test cases
that print the name of the test case, and also put a
print statement in the beginning of the specified method.
Recompile, run the test suite, and log the output. Then,
we can search for the specified method’s print-statement
output and correlate all matches with their preceding test
case’s print-statement output.

2) Put an artificial bug that forces a crash/uncaught excep-
tion at the beginning of the specified method, recompile,
run the test suite, and then witness which test cases now
fail due to the new artificial bug.

3) Put a breakpoint at the specified method, and step-and-
continue, to look up the stack trace, one-by-one, for each
test case for which the breakpoint is tripped.

As we can see from these possible solutions, this question is
answerable with current tools, but it is far from obvious how to
go about answering it. The current state of development tools
around understanding such simple questions about the test
suite is primitive and relies upon such tricks and cleverness.

Now, consider more difficult questions, such as “do most
test cases execute the same or similar subsets of methods or
components?” or “are my test cases primarily small, mostly
single-method unit test cases, medium-sized integration test
cases, or large-scale system tests (and what are the proportions
of those categories)?”

Regarding the first of these questions of “same or similar”
methods, Begel and Zimmerman [3] conducted a survey that
elicited 607 responses from software engineers and found that
81% of testers said that answering questions such as “How
should we handle test redudancy and/or duplicate tests?” was
worthwhile. For the second of these questions, regarding the
composition of our test suite in terms of unit, integration,
and system tests, Begel and Zimmerman also found that their
respondents asked “What is the cost/benefit analysis of the
different levels of testing i.e., unit testing vs. component
testing vs. integration testing vs. business process testing?”
Moreover, we might expect that some software be more
heavily tested by unit tests (e.g., a utility library that has little
interaction between its methods) and other software to be more
heavily tested by system tests (e.g., a tool with a user interface
in which all components of the system work together).

Existing developer tools cannot easily help to answer such
questions. And, some research techniques (e.g., dynamic slic-
ing and change impact analysis) might only help to address
a subset of them, and are not currently implemented in a
way that developers can easily utilize them in practice. For
each such question, we could imagine developing a specialized



Fig. 1: Morpheus Web Application UI, visualizing MAVEN test results

analysis technique to solve just that one problem (e.g., using
clustering on per-test-case execution data to identify groups
of similar executions), but giving developers a way to view,
query, discover, and explore their test execution behavior
would allow for developers to form their own questions and
answer them. Our goal with this work is to help to address
these problems and to answer these questions, and more, with
a query-able and interactive global-overview visualization of
test-case execution.

III. MORPHEUS VISUALIZATION

One way to simultaneously comprehend test and product
code is to trace and surface relations between them; like
done in a test-coverage matrix (or simply, “test matrix”).
A test matrix places test cases on one dimension/axis and
the program entities to be covered or executed on the other
dimension/axis. Consider the simple test matrix shown in
Figure 2a that depicts the test cases on the vertical axis and
the program methods to be executed on the horizontal axis,
i.e., each row represents a single test case, and each column
represents a single method. The cells at the intersection of
the rows and columns represent whether the test case (row)
executes (i.e., covers) the method (column). For example, the
first row in Figure 2a shows the coverage for Test 0. Test
0 covers Methods A, E, and H. Similarly, Method A was
executed by Tests 0, 3, and 9.

Simple test matrices such as this can concisely represent the
code coverage of a program’s test suite and reveal nuanced
details of the test suite. However, test matrices for real-
world test suites with thousands of test cases can be visually
intractable and run into the information overload challenges.
By itself, a test matrix is a static, unchanging data structure.

To address challenges of scale and scope, we re-imagine
the test matrix as an interactive, dynamic visualization that

reveals relations between tests and product code in a software
project, at various levels of abstraction and detail. We refer
to this interactive, visual rendition of the test matrix as
the MORPHEUS VISUALIZATION. We next detail key visual
and interactive elements of MORPHEUS: (1) Artifacts along
Rows and Columns; (2) Color Overlays; (3) Juxtaposition of
Artifacts via Sorting; (4) Drill-downs via Filtering.

Artifacts along Rows and Columns. The rows and columns
of the test matrix can represent multiple artifacts. For example
in Figure 2a, rows represent test cases and columns represent
program methods. However, this mapping is arbitrary and
could equivalently be reversed (i.e., methods on rows and test
cases on columns). Moreover, we envision that each of these
dimensions can be configured to represent other artifacts. For
example, one could have test cases on one axis and other
granularities on the other axis: (a) Individual source-code lines;
(b) Methods; (c) Source files; and (d) Modules or Packages.

Color Overlays. To link an artifact on a specific row and
column, MORPHEUS shows a colored dot or node at the
intersecting cell of the row and column. The matrix in Fig-
ure 2a shows a black colored dot at the intersection of Test
0 and Method A, to reveal that Test 0 executed Method A.
MORPHEUS affords overlaying such intersecting dots with
different colors to highlight additional information about a
relation between two artifacts along rows and columns.

Consider the green- and red-colored intersecting dots in
Figure 2b. Those colors show passing (green) and failing (red)
tests. Such color overlays show that Test 0 (with green dots)
is passing, while Test 2 (with red dots) failing. Moreover, we
can also discern that Method A, with one green and two red
dots in its column, is executed by both passing and failing
tests; and thus, may be the source of a fault.

In our evaluation, we also use color overlays to highlight



Test 1
Test 2
Test 3
Test 4
Test 5

Meth
od

 A

Meth
od

 B

Meth
od

 C

Meth
od

 D

Meth
od

 E

Test 6
Test 7
Test 8
Test 9

Test 0
Meth

od
 F

Meth
od

 G

Meth
od

 H

Meth
od

 I

Meth
od

 J

(a) Test matrix presenting tests and
methods as rows and columns; the in-
tersection shows a dot if it was covered.

Test 1
Test 2
Test 3
Test 4
Test 5

Meth
od

 A

Meth
od

 B

Meth
od

 C

Meth
od

 D

Meth
od

 E

Test 6
Test 7
Test 8
Test 9

Test 0
Meth

od
 F

Meth
od

 G

Meth
od

 H

Meth
od

 I

Meth
od

 J

(b) Coverage colored according to pass
(green) or fail (red).

Test 0
Test 2
Test 9
Test 1
Test 3

Meth
od

 D

Meth
od

 E

Meth
od

 A

Meth
od

 C

Meth
od

 B

Test 4
Test 7
Test 5
Test 6

Test 8
Meth

od
 F

Meth
od

 H

Meth
od

 J

Meth
od

 G

Meth
od

 I

(c) Sorting tests and methods by cov-
erage.

Test 2
Test 9
Test 3
Test 7

Meth
od

 D

Meth
od

 E

Meth
od

 A

Meth
od

 F

Meth
od

 J

Test 5

(d) Filtering to only failing
tests and the methods exe-
cuted by them.

Fig. 2: Test matrices organized and presented in various ways.

test pass-or-fail results and test type (e.g., unit, integration,
or system tests). We envision overlaying other metrics using
color, such as: performance data, code ownership, code churn,
and distinct feature areas. Additionally, engineers would be
able to define their color overlays to gain insights into specific
problems of interest.

MORPHEUS also affords color overlays on artifact labels
along rows and columns. Coloring the artifact labels them-
selves can reveal organizational patterns in the test and pro-
duction code. For instance, if all methods along the columns
were colored using their package names, engineers would
discern which methods belong to specific modules; or how
such modules are interspersed when their methods are split
into failing and passing methods.

Juxtaposition of Artifacts via Sorting. Artifacts within a soft-
ware project — tests, source lines, methods, files, packages —
are typically related to each other. Latent dependencies snake
across such artifacts to tie them together into a single software
product. Therefore, users may make meaningful discoveries by
reordering the rows and columns in the matrix visualization
to juxtapose related artifacts. For instance, reordering rows
to cluster tests that execute the same or similar methods or
packages may be revealing. Scattering those test rows across
100s or even 1000s of other tests in the matrix does little to
identify patterns in how such tests are different or similar to
each other.

MORPHEUS presents a variety of sorting functions to orga-
nize the rows and columns such that related artifacts repre-
sented on those rows and columns can be bundled together.
Specifically, we focus on the following sorting functions as
part of the evaluation for this work.

1) Bundling tests based on their granularity: Unit, Integra-
tion and System;

2) Sorting tests and production artifacts based on their
directory pathnames and filenames that they appear in
on disk — this mimics the sorting that developers are
accustomed to in IDEs;

3) Clustering production artifacts that are tested together;
4) Clustering tests that test common artifacts;
5) Sorting tests and code units (methods, lines, packages) by

metrics such as coverage and suspiciousness, respectively.

To illustrate how such sorting could work, consider the

matrix in Figure 2c that builds further upon Figure 2b. Both
axes in Figure 2c are sorted by coverage. Methods executed
by more tests are shuffled to the left, while tests executing
more methods are placed at the top. Such sorting could reveal
methods that are never or barely tested (e.g., only Test 6
executes Method G, and Method I is untested altogether), or
reveal test cases like Test 8 that executes a broad swath of the
program (resembling an integration or system test) and Tests
5 and 6 that execute only a single method (like unit tests).
Beyond preset sorting capabilities, we envision facilitating
developer extensions in the future. Users would be able to
plug-in custom sorting functions to comprehend interesting
facets of their software project and tests.

Drill-downs via Filtering. When trying to understand how a
test suite is verifying product behavior, developers want to
focus on specific tests, instead of the whole test suite in one
view. To support such detailed exploration, we provide the
ability to filter down to tests or production artifacts of interest
to developers. Specifically, we focus on the following filters
as part of the evaluation for this work.

• Filter by Name. This allows developers to filter down to
one or many tests, methods or modules by their name.

• Filter to a Cluster. This leverages the sorting and
clustering capabilities enumerated in the previous section,
allowing developers to inspect clusters one at a time, after
initially sorting the given artifacts;

• Filter by test levels. This filter allows a user to specify
a type of test (unit, integration, or system) or specify a
specific range of number of test cases. This filter would
particularly help in identifying gaps in a test suite’s ability
to verify product behavior and present opportunities for
developers to expand on their testing efforts;

• Filter by test result. This filter allows users to choose
to see only passing of failing test cases.

Figure 2d illustrates a filtered view of the test matrix in
Figure 2c when filtered for failing test cases. We maintain the
sort order of methods and tests along the axes, but we filter
out passing test cases out and also remove methods that are
not covered by failing tests. Such filtered views may be useful
when debugging faults that are causing the test-case failures.



IV. IMPLEMENTATION

As shown in Figure 3, the MORPHEUS implementation
comprises three components: (1) a per-test coverage data
analyzer as a containerized component, (2) a RESTful API
serving access to the coverage data, and (3) a web-based
visualization of the coverage data. The authors have open
sourced this implementation to facilitate reproducibility and
extension by other researchers and practitioners [7].

Per-Test Coverage Data Collection. Code-coverage tools typi-
cally report aggregate coverage for an entire test suite, which is
often composed of several test cases. Collecting code coverage
for individual tests (i.e., per-test coverage) provides traceability
between those tests and the code that each test executes. We
utilize a research tool called TACOCO [8] that collects per-test-
case code coverage. Specifically, we use JACOCO’s coverage
instrumentation [9] within TACOCO’s analysis framework.
TACOCO discovers the compiled tests within a project and uses
an appropriate test framework (e.g., JUnit3/4/5, or TestNG)
to run tests. TACOCO’s event-based hooks determine the start
and end of individual test case executions, which allows it to
differentiate the coverage data — as reported by JACOCO —
of one test case from the next.

RESTful Access to Coverage Data. The coverage data col-
lected from the per-test analysis is stored in a database, and is
exposed via a RESTful API as shown in Figure 3. We collect
code coverage at line-level granularity, thus creating granular
traceability between tests and product code. For MORPHEUS,
we focus on a method-level granularity, and translate line-
level coverage to method-level coverage by tracking the line-
mappings (beginning- and ending-source line numbers) for
methods within a project.

Web-based MORPHEUS VISUALIZATION. Figure 1 shows the
front-end of MORPHEUS that we implemented as an HTML5
application built using REACT and D3.JS [10]. The front-end
consists of two parts: (1) the test-matrix visualization and (2)
the toolbar. The visualization — implemented in D3.JS —
shows the connections between methods and tests. The toolbar
— built with REACT — provides a set of ways to filter, sort,
and query the data. Since the visualization is built using web-
based standards, it works with any modern web-browser.

This implementation affords users with the interaction ca-
pabilities of sorting, filtering, and color-based encoding of the
coverage data, as detailed in Section III, which provides the
basis upon which we conduct our evaluations of our test-matrix
visualization to support answering developer questions.

V. EVALUATION

Using the implementation of MORPHEUS that we presented
in Section IV, we evaluated its effectiveness in aiding develop-
ers when answering detailed questions about a project’s a test
suite. We specifically ask the following research questions:

RQ1 Does MORPHEUS help to reveal the function of
individual test cases within a test suite?

RQ2 Does MORPHEUS help to reveal the global form of
a test suite?

COVERAGE COLLECTION

Clone and Build 
Project

Collect 
Per-test-case 

Coverage

Per-test 
Coverage 
Database

Web Browser - MORPHEUS

1

3
RESTful BACKEND 
SERVER

RESTful API

2

HTML/CSS/JS

hostname: api*

hostname: visualization*

Fig. 3: MORPHEUS Implementation

RQ3 Can MORPHEUS enable users to discern common or
differing patterns across multiple projects?

To answer the research questions, we conducted a user
study (composed of three tasks) and two case studies (a
single-project and cross-project case study) that examine novel
aspects of MORPHEUS that are designed to answer complex
questions about a software project and its tests. The studies
map to the research questions that they address as follows:

User Study Case Study
Task 1 Task 2 Task 3 Single-Project Cross-Project

RQ1 X X X
RQ2 X X X
RQ3 X

In terms of research questions, we define function of a
test case as the functionalities that it tests, methods that it
executes, and the similarities and overlaps with other tests;
and we define form as the overarching patterns throughout a
test suite and composition of tests within a test suite, as well
as distinguishing similarities and differences across multiple
test suites.

During this evaluation, we applied MORPHEUS on a set
of four open-source Java projects: (a) COMMONS-CLI: a
command-line-options parser library; (b) COMMONS-IO: a
utility library for I/O functionality; (c) JSOUP: an XML
parser library; and (d) MAVEN: a popular build system. Some
statistics about the software projects are presented in Table I.
Each of the columns in Table I provides statistics about the
Java artifacts specifically (i.e., number of Java files, number
of Java lines of code, number of Java methods under test, and
number of JUnit test methods). Further, just for the purposes
of the evaluation, we define “unit tests” as tests that execute
methods within a single class; “integration tests” are tests that
execute methods across multiple classes in a single package;
and “system tests” are tests that execute multiple methods that
reside in at least two different packages.

TABLE I: Software Projects

Project # Files # LOC # Methods # Test Cases
Commons CLI 52 7066 247 355
Commons IO 360 40032 1468 1780
Maven 1033 91784 6626 682
JSoup 132 23181 1245 783

User Study. We conducted a user study to evaluate MOR-
PHEUS in aiding real software engineers in the context of test-
ing and engineering tasks such as debugging, code refactoring,
and on-boarding to a new project. We presented participants



with the sources and builds for COMMONS-CLI and asked
them specific questions about individual methods and tests
in the project. We chose to use COMMONS-CLI among our
software projects for the user study because of the limited
ability of traditional tools to support answering questions, and
the time limitations of our user study — COMMONS-CLI was
suitably limited in size (in terms of number of tests and meth-
ods) to allow for the user study to be conducted in the time
alloted (one hour per participant). In all, 20 software engineers
participated in the user study, with a mean experience of 7.7
years of software development experience, 6.3 years in object-
oriented programming, 5.9 years in Java programming, and
4.9 years in software testing. The 20 participants were largely
composed of graduate (13) and undergrad (2) students from the
department of the authors, as well as software professionals (5)
working for large, reputable software-industry corporations.

The study was conducted as a series of one-on-one ses-
sions, averaging around 45 minutes each, and consisted of
two rounds: (a) “IDE” round; and (b) “Visualization” round.
In both rounds, each participant performed three software-
engineering tasks for the same software program: once with
their own IDE or toolchain of their choice (i.e., the “IDE”
round), and once with MORPHEUS (i.e., the “Visualization”
round). Across both rounds, the participants performed similar
software-engineering tasks, but focused on different methods
and test cases. For example, if a participant was asked to
identify integration tests for MethodA during the IDE round,
then during the Visualization round, the participant was asked
to identify integration tests for MethodB. Further, the partici-
pants were split into two groups — one group would perform
the tasks for MethodA in the IDE round, and for MethodB
in the Visualization round; the other group was asked to do
the opposite to avoid any bias due to one method potentially
making the task more difficult.

In the “IDE” round, the participants could use any tool
in their developer toolkit and were asked to report the tools
they used. The participants used a variety of tools: IntelliJ,VS
Code, Eclipse, Vim, and grep. Most participants used IntelliJ
(10 participants), Eclipse (6), or VSCode (2), while every
other tool was used by at most one participant. We also
helped the participants in setting up the project so they could,
at minimum, run the test suite and obtain code coverage
information using JACOCO [9].

Before the “Visualization” round, the users got a brief
hands-on training with MORPHEUS, on a different, smaller
program than the one used during the experiment. The training
allowed participants to learn about the features of MORPHEUS.

User Study Tasks. In each task in the user study, we asked
participants to answer questions about tests and methods in
COMMONS-CLI. We framed those questions in scenarios that
developers often run into, and would ask similar questions
about their code and tests.

Developers often re-run tests after modifying code to check
if the change caused any regression. However, current tools
and IDEs offer limited support to trace how individual tests

execute specific methods. Many IDEs have code-coverage
tools, but it provides a file-centric view of the production code
— showing which lines are covered, but not by which tests.
So, we presented participants with this first task:

Task 1 List the set of tests that cover the following method:
Group A: HelpFormatter.getOptPrefix()
Group B: MissingOptionException.getMissingOptions()

Methods that fail together, i.e., they are executed by the
same failing test cases, may offer clues about a failure’s root
cause. To mimic such a scenario, we asked participants to
complete this second task:

Task 2.1 List the set of methods that are also executed by the one
or more of the same failing test cases that execute:
Group A: Option.setArgName(String)
Group B: Option.setValueSeparator(char)

Task 2.2 List the set of failing tests that are testing method:
Group A: Option.setArgName(String)
Group B: Option.setValueSeparator(char)

Developers often write multiple types of tests: unit, integra-
tion, and system tests. Understanding how the system is exe-
cuted by various kinds of tests can give insight into a specific
method’s test plan and testability. As such, the participants’
third task focused on understanding the composition of the
test suite:

Task 3.1 List the set of unit tests for method:
Group A: HelpFormatter.findWrapPos(String,int,int)
Group B: HelpFormatter.renderWrappedText(StringBuffer,int,int,String)

Task 3.2 List the set of integration tests for method:
Group A: HelpFormatter.findWrapPos(String,int,int)
Group B: HelpFormatter.renderWrappedText(StringBuffer,int,int,String)

Empirical Results. Across both rounds, we tracked partici-
pants’ performance in two ways: (1) time taken by a partici-
pant to complete each task (within a 5-minute time limit per
task), and (2) the correctness of a participant’s answer to each
question. In Table II, we report “correctness” results, as the
mean precision, recall, and f-score for each task performed
by users. We report mean scores for both the IDE and
visualization tasks. Figures 4a and 4b show the boxplots for the
precision and recall for each task. Additionally, we compute
Precision, Recall, and F-score as follows:

Precision =
#Correct Answers

(#Correct Answers) + (#Incorrect Answers)
(1)

Recall =
#Correct Answers

(#Correct Answers) + (#Correct Answers Omitted)
(2)

F-score = 2 ×
(Precision × Recall)
(Precision + Recall)

(3)

For Equations 1 and 2, “Answers” are provided by the study
participants in the form of a set of methods or test cases. For
example, for Task 1, each participant provided their answers in
the form of a list of test cases that executed a specified method,
and for Task 3, each participant provided their answers in the
form of a list of methods.



TABLE II: Mean Precision, Recall, and F-score results.

Tasks Precision Recall F-Score
IDE VIS. IDE VIS. IDE VIS.

Task 1 0.68 1.00 0.18 1.00 0.23 1.00
Task 2.1 0.25 1.00 0.01 0.97 0.02 0.98
Task 2.2 0.11 0.90 0.05 0.90 0.05 0.90
Task 3.1 0.60 1.00 0.41 1.00 0.39 1.00
Task 3.2 0.19 0.94 0.10 0.94 0.10 0.94

The row for Task 1 in Table II suggests perfect mean
precision and recall scores of 1.0 for the Visualization rounds.
Whereas, for the IDE rounds the mean precision and recall
scores stand at 0.68 and 0.18, respectively. Notice, this trend
continues for all tasks. The participants consistently performed
better using MORPHEUS, in comparison to when using their
own development environment.

The low mean precision scores suggest that with the IDE,
when trying to report the correct set of methods or test cases
for each task, the users consistently reported an incorrect set
of methods and test cases. Moreover, the even lower mean
recall scores indicate that they never reported many methods
and test cases that they otherwise should have.

TABLE III: Mean time (secs.) taken by participants per task.

Rounds Mean Time (seconds)
Tasks 1 Task 2.1 & 2.2 Tasks 3.1 & 3.2

IDE 189 279 285
Visualization 86 139 177

Next, Table III presents the mean time taken (in seconds) by
a participant to finish each task. In Figure 5, boxplots show
the timing results per task and for both rounds. During the
IDE round, the participants made use of a variety of tools to
get to an answer. The results suggest that the participants were
faster in reporting answers with MORPHEUS.

Finally, we also asked participants their level of satisfaction
with each of the tool treatments, on a scale of 1 (least satisfied)
to 10 (most satisfied). The mean satisfaction score for the IDE
treatment (i.e., using any tool available) was only 4.4, whereas
the mean satisfaction score for MORPHEUS was 8.8.

COMMONS-CLI Case Study. To highlight to the reader
the ability of MORPHEUS to reveal the overarching, global
behavior of a test suite, we present a case study of a single
software project (other projects are visualized in the next
“Cross-Project-Comparison Case Study”). When discussing
the global form of the test suite, we specifically expect to
be able to answer the following questions: (1) “what is (and
is not) tested?”; and (2) “what types of tests are present in
the test suite?” Using COMMONS-CLI’s test suite as a case
study, we show how MORPHEUS can aid in answering such
questions about that project.

Figure 6a shows how MORPHEUS presents the entire test
suite for COMMONS-CLI to a developer. The initial view of
the test matrix gives us an overview of all the methods (hori-
zontal axis) and tests (vertical axis). The tests and methods
are both sorted based on their names, and names of their
enclosing packages and classes. Based on this view, we can
make two observations. First, the horizontal strings of (green

(a) Boxplots for Precision of each task and tool.

(b) Boxplots for Recall of each task and tool.
Fig. 4: Precision and Recall of each task and round. (Higher
is better)

Fig. 5: Time (seconds) taken by participants to complete each
round; separated per task. (Lower is better)

and red) test rows suggest that most tests seem to execute many
methods. Second, the similarity between the horizontal (green
and red) test rows shows that many tests execute common
methods and are perhaps variations of one another.

“Tested, or Not Tested”. To determine what is (or not) tested,
we sort the methods and tests by their coverage (i.e., number of
methods executed by a test; and number tests that a method is
executed by). Figure 6b shows the sorted view of COMMONS-
CLI’s test suite, with frequently executed (and tested) methods



(a) COMMONS-CLI. All tests and methods sorted by name. (b) COMMONS-CLI. Tests & Methods sorted by coverage.

Fig. 6: Sorting COMMONS-CLI’s Methods and Test cases.

to the left, and tests executing the most number of methods at
the top. By sorting the tests and methods, it becomes apparent
that a selection of methods is very well-tested (on the left
side), and the further you move to the right the sparser the
coverage becomes, to the point of no coverage for a (small)
group of methods. Developers can use this view to directly
take steps on where the test suite can be improved.

“Type of Tests”. Finally, MORPHEUS enables filtering and
coloring to the type of test cases: e.g., passing versus failing, or
unit versus integration versus system. Figures 6a and 6b color
the tests according to their pass/fail status: green denoting
passing and red denoting failing. Alternatively, Figure 7c
shows the colored result for each type of test: orange dots
indicating integration tests and green dots indicating unit tests.
From this view, we can clearly observe that COMMONS-CLI
tests are primarily written as integration tests (326 tests), with
limited amounts of unit tests (29 tests).

Case Study Inference. MORPHEUS provides multiple ways to
better understand the test-suite composition, allowing engi-
neers to sort through tested and untested methods and filtering
to show the different types of tests. Combining filters, sorts,
and coloring allows us to explore what is covered, what is
tested together, and what types of tests are in the test suite.

Cross-Project-Comparison Case Study. So far, we focused on
a single software project’s test suite, and its form and function.
We now compare and contrast visualizations from multiple
projects, as a case study, to see if lessons can be learned about
different test suites from differing software systems. Such
inter-project comparisons may be useful to allow software en-
gineers to assess if the degree and type of testing is appropriate
for their type of program. For example, one may expect that
an API-based utility library to be largely comprised of unit
tests — each method in the library performs some function
that can be independently tested with limited dependencies
among those methods. Similarly, for an interactive system, one
may expect to find test suites that have many more system
and integration tests, in addition to unit tests, because the
system itself relies upon multiple interacting components to
perform its functionality. Figure 7 shows how MORPHEUS
presents four projects — MAVEN, JSOUP, COMMONS-CLI,

TABLE IV: Distribution of type of tests (in percentage).

Test Type Maven Jsoup Commons-CLI Commons-IO
Unit Tests 10% 3% 8% 71%
Integration Tests 7% 0% 92% 9%
System Tests 82% 97% 0% 19%

and COMMONS-IO — coloring according to test type: purple
indicates system tests, orange indicates integration tests, and
green indicates unit tests.

The visualizations in Figure 7 make two aspects apparent,
(1) long vertical lines, and (2) the sparseness of some matrices.
The long vertical lines show us many tests cover the same
or similar sets of methods. We see this happen mainly with
JSOUP (Figure 7b), and COMMONS-CLI (Figure 7c), which
can be attributed to the way tests are structured. MAVEN also
contains some longer vertical lines, but it is not as apparent
as JSOUP and COMMONS-CLI.

JSOUP structures their tests mainly around a small XML
string that is being parsed by the library and finally, the results
are verified. As a result, the majority of the tests are variations
of each other, with each test covering different corner cases.

To test some parts of the COMMONS-CLI library, the
project’s developers perform three steps: (1) create a string
array, (2) create for each test a command-line argument parser,
and finally, (3) parse the string using the parser. Consequently,
many of the tests make use of the same components, causing
us to see the long vertical lines in MORPHEUS.

Now, consider the second aspect: difference in sparseness
across the visualizations. Both JSOUP and COMMONS-CLI
have denser visualizations, while MAVEN and COMMONS-
IO are more sparse. This can be attributed, in part, to the
composition of the test suites. Table IV shows the distribution
of tests within the four projects. JSOUP is comprised almost
solely of system tests, whereas COMMONS-CLI is comprised
almost solely of integration tests due to all classes living in
the same package. As mentioned before, MAVEN also exhibits
long vertical lines, but not as much; as evident in its sparser
test distribution in comparison to JSOUP and COMMONS-CLI.
Finally, one sees that COMMONS-IO focuses more on unit
tests, as reflected in the sparseness of MORPHEUS; and this
result matches our expectation for a utility library that contains
loosely coupled methods.



(a) Maven. (b) Jsoup.

(c) Commons-CLI. (d) Commons-IO.

Fig. 7: MORPHEUS visualizing the test suites for four projects: MAVEN, JSOUP, COMMONS-CLI, and COMMONS-IO (purple
indicates system tests, orange indicates integration tests, and green indicates unit tests).

Case Study Inference. MORPHEUS is able to reveal patterns
to us across projects, e.g., composition of tests, and how
developers test their system. The sparseness can indicate the
presence of unit, integration, or system tests, while the vertical
lines can point to commonly tested methods.

VI. DISCUSSION

Collectively, our user study and case studies reveal that
MORPHEUS can aid software engineers in comprehending
software tests and test suites. For RQ1, the user-study par-
ticipants answered specific questions about individual tests
and methods in a real-world system (Tasks 1, 2, and 3).
Moreover, they did so with greater accuracy, and while using
less time with MORPHEUS, than they did when using their own
development tools. As such for RQ1, we are able answer:

In a controlled user study, MORPHEUS aided experienced
software engineers in correctly and efficiently understanding
the function of test cases, by revealing how and the degrees to
which individual test cases execute specific methods within
a real-world software system.

For RQ2, the user-study participants needed to assess the
composition of the test suite of unit, integration, and system
tests for Task 3. Moreover, using COMMONS-CLI’s test suite
as a case study, we assess if MORPHEUS is able to highlight
key aspects of the project’s test suite. MORPHEUS’s sort,
filter, and coloring functionalities enabled us to breakdown
COMMONS-CLI’s tests into different types: 326 integration

tests, and 29 unit tests; suggesting a set of highly interdepen-
dent methods that invoke together across a large swath of the
project’s tests. MORPHEUS was also able visualize methods
with sparse, or no test coverage; revealing opportunities to
expand test coverage in COMMONS-CLI. Finally, MORPHEUS
was successful at highlighting overall form differences among
multiple projects in our cross-project-comparison case study,
which also demonstrates its ability to reveal global overviews
of test behavior. As such for RQ2, we are able to answer:

Across the user study and two case studies, MORPHEUS
was able to reveal the overarching form and composition of
real-world software test suites, especially in terms of the kind
of tests composing the suites, the degree to which the suite
executes the underlying software system, and the patterns of
execution across multiple test cases.

For RQ3, we presented a cross-project-comparison case
study, in which we applied MORPHEUS to analyze the global,
overarching form of test suites, across multiple projects. This
study represents a scenario in which engineers could assess
if the overarching form and structure of their suite is suitable
for the program under test. Engineers may do so by visually
comparing the test-suite structures for independent software
systems with similar architectures or features. For RQ3 we
conclude in the affirmative:

MORPHEUS was able to highlight notable differences
and similarities in the global structure (or form) for test
suites across four independent real-world software systems.



In doing so, we were also able to gain insights about the
architecture of the software systems themselves.

Our results with MORPHEUS suggest that software-test
comprehension goes beyond improving code quality. We find
that test comprehension reveals insights about a program’s
architecture. Understanding software tests may also help in
forming meaningful questions about a program that aids
in performing practical software engineering tasks, such as
refactoring, debugging, or on-boarding a new contributor.

VII. THREATS TO VALIDITY

The main threats to validity in our studies arise from the
generalizability of our results. Our study focused on Java
systems that used the JUnit testing framework. Although other
programming languages may be tested in different ways, the
approach that we take in this work could easily be extended to
those languages and testing frameworks, and we see nothing
about the general approach that renders any of its conceived
features more or less beneficial in other environments.

Also, our mean years of software-development experience
for the participants in our study was almost eight years. As
such, our participants were well versed in their development
tools. An argument could be made that a developer with
much more (or much less) experience may have performed
better on the their development tools than our participants,
and although that may be true to some extent, the extreme
differences between the accuracy in the IDE and visualization
treatments likely demonstrates that such differences would not
change the general result.

Finally, our user study included participants who were not
developers of the software projects. As such, we cannot gen-
eralize our results to developers who already have experience
and knowledge of their test suite. However, the questions and
tasks in the user study would likely be challenging even with
experience in a project. Future work is planned to study the
use of MORPHEUS by project contributors.

VIII. RELATED WORKS

Relationship between Test and Production Code. Prior works
have explored using per-test-case coverage to aid developers
for tasks such as fault localization [11]. Others focused on
helping developers localize what has been tested and by what
(e.g., [12], [13], [14], [15], [16], [17], [18], [19]). MORPHEUS
visualizes dynamically observed, per-test-case code coverage
data to reveal traceability between test- and production-code
as well. However, MORPHEUS does so in the global context of
test cases and production code that house individual code-to-
test relationships, enabling answers questions such as, “what
other tests are failing when executing a given method?”

Synchronous co-evolution of tests and code has received
prior study and investigation (e.g., [20], [21]). This work
also studies the relation between tests and code. However,
instead of addressing questions about lineage, MORPHEUS
helps uncover the composition and working of test cases at
a given moment in the lifetime of a software project.

Dynamic Behavior Comprehension. Multiple prior works
have studied comprehension of software behavior. Such works
typically reveal relationships between different parts of a
project’s source code, typically using viualizations (e.g., [22],
[23], [24], [25]). Similarly, comprehension of software exe-
cution traces, aided with visualization also has received prior
study (e.g., [26], [27]). The main purpose of such works is
to understand a single execution trace for a specific software
program. Executions from test-runs can aid in understanding
production code. Prior works looked to extract product use-
case diagrams based on the behavior of a single test [28], [29].

MORPHEUS also reveals runtime execution data about a
software project. However, MORPHEUS reveals such execution
data in the context of a project’s test suite, by highlighting
relations between the project’s tests and code.

Matrix-Based Visualizations. Prior works in information-
visualization research have employed matrix-based visual-
izations for a wide variety of applications. Fernandez et
al. [30] created CLUSTERGRAMMER., a tool to visualize
high-dimensional biological data as a matrix visualization.
Similarly, matrices have been used to visualize social networks
[31], [32], [33]. Prior work has shown the advantage of matrix-
based visualizations [34], [35], [36] to explore graph data at
many levels. Ghoniem et al. [37] shows that the readability
of matrix-based visualization outperforms node-link diagrams
when graphs become bigger than twenty vertices. Our work
too presents high-density information in a matrix-based vi-
sualizations. However, the information that we visualize is
software test coverage data as applied specifically to the field
of software engineering.

IX. CONCLUSIONS

Comprehending test suites for real-world software projects
in relation to production code can be challenging for engi-
neers. We approach such challenges using MORPHEUS — a
visual tool that traces relations between test and production
code. While MORPHEUS traces test-to-code relations in global
overviews of a project’s entire test suite, engineers can also
use MORPHEUS to understand executions of specific tests and
methods using exploration functionalities, e.g., filter and sort.

We provide our implementation of MORPHEUS as open
source, as well as an interactive demo and replication package
with our user study questionnaire and database to facilitate
repeating our user study [7].

Our evaluations show that MORPHEUS can provide insights
into test suites of real-world systems, and that it consistently
outperforms traditional development tools, both in accuracy
and time taken to complete software-engineering tasks.

We envision MORPHEUS to evolve into an extensible frame-
work for a variety of sort, filter, and exploration functions
that aid software-test comprehension. As next steps, we will
build such exploration functionalities by surveying owners and
contributors of real-world systems about the typical questions
they encounter about their software tests and testing strategies.



REFERENCES

[1] S. Vasanthapriyan, J. Tian, D. Zhao, S. Xiong, and J. Xiang, “An
ontology-based knowledge sharing portal for software testing,” in 2017
IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), 2017, pp. 472–479.

[2] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mäntylä, “Benefits
and limitations of automated software testing: Systematic literature
review and practitioner survey,” in 2012 7th International Workshop on
Automation of Software Test (AST), 2012, pp. 36–42.

[3] A. Begel and T. Zimmermann, “Analyze this! 145 questions for
data scientists in software engineering,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
12–23. [Online]. Available: https://doi.org/10.1145/2568225.2568233

[4] E. Daka and G. Fraser, “A survey on unit testing practices and problems,”
in 2014 IEEE 25th International Symposium on Software Reliability
Engineering, 2014, pp. 201–211.

[5] L. Zhao and S. Elbaum, “Quality assurance under the open
source development model,” Journal of Systems and Software,
vol. 66, no. 1, pp. 65–75, 2003. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S016412120200064X

[6] R. Torkar and S. Mankefors-Christiernin, “A survey on testing and
reuse,” 12 2003, pp. 164–173.

[7] “Morpheus,” Morpheus Tool, Replication Package, and Code, 2020,
https://spideruci.github.io/morpheus.

[8] J. Kim, V. K. Palepu, K. Dreef, and J. A. Jones, “Tacoco: Integrated soft-
ware analysis framework,” Github, https://github.com/spideruci/tacoco,
2015. [Online]. Available: https://github.com/spideruci/tacoco

[9] “Jacoco.” [Online]. Available: https://www.eclemma.org/jacoco/
[10] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”

Visualization and Computer Graphics, IEEE Transactions on, vol. 17,
no. 12, pp. 2301–2309, 2011.

[11] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula au-
tomatic fault-localization technique,” in Proceedings of the International
Conference on Automated Software Engineering, November 2005, pp.
273–282.

[12] A. Tahir and S. G. MacDonell, “Combining dynamic analysis and
visualization to explore the distribution of unit test suites,” in 2015
IEEE/ACM 6th International Workshop on Emerging Trends in Software
Metrics. IEEE, 2015, pp. 21–30.

[13] N. Koochakzadeh and V. Garousi, “Tecrevis: A tool for test coverage and
test redundancy visualization,” in Proceedings of the 5th International
Academic and Industrial Conference on Testing - Practice and Research
Techniques, ser. TAIC PART’10. Berlin, Heidelberg: Springer-Verlag,
2010, p. 129–136.

[14] A. F. Otoom, M. Hammad, N. Al-Jawabreh, and R. A. Seini, “Vi-
sualizing testing results for software projects,” in Proc. of the 17th
International Arab Conference on Information Technology (ACIT’16),
Morocco, 2016.

[15] M. Hammad, A. F. Otoom, M. Hammad, N. Al-Jawabreh, and
R. Abu Seini, “Multiview visualization of software testing results,”
International Journal of Computing and Digital Systems, vol. 9, no. 1,
2020.

[16] T. Tamisier, P. Karski, and F. Feltz, “Visualization of unit and selective
regression software tests,” in International Conference on Cooperative
Design, Visualization and Engineering. Springer, 2013, pp. 227–230.

[17] B. Van Rompaey and S. Demeyer, “Exploring the composition of
unit test suites,” in 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering-Workshops. IEEE, 2008, pp. 11–20.

[18] N. Aljawabrah and A. Qusef, “Tctracvis: test-to-code traceability links
visualization tool,” in Proceedings of the Second International Confer-
ence on Data Science, E-Learning and Information Systems, 2019, pp.
1–4.

[19] A. Rodrigues, M. Lencastre, and A. d. A. Gilberto Filho, “Multi-
visiotrace: traceability visualization tool,” in 2016 10th International
Conference on the Quality of Information and Communications Tech-
nology (QUATIC). IEEE, 2016, pp. 61–66.

[20] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,”
Empirical Software Engineering, vol. 16, no. 3, pp. 325–364, 2011.

[21] B. Ens, D. Rea, R. Shpaner, H. Hemmati, J. E. Young, and P. Irani,
“Chronotwigger: A visual analytics tool for understanding source and
test co-evolution,” in 2014 Second IEEE Working Conference on Soft-
ware Visualization. IEEE, 2014, pp. 117–126.

[22] A. Kuhn, D. Erni, P. Loretan, and O. Nierstrasz, “Software
cartography: thematic software visualization with consistent layout,”
Journal of Software Maintenance and Evolution: Research and
Practice, vol. 22, no. 3, pp. 191–210, 2010. [Online]. Available:
http://dx.doi.org/10.1002/smr.414

[23] F. Deng, N. DiGiuseppe, and J. A. Jones, “Constellation visualiza-
tion: Augmenting program dependence with dynamic information,” in
Proceedings of International Workshop on Visualizing Software for
Understanding and Analysis, 2011, pp. 1–8.

[24] V. K. Palepu and J. A. Jones, “Revealing runtime features and constituent
behaviors within software,” in 2015 IEEE 3rd Working Conference on
Software Visualization (VISSOFT). IEEE, 2015, pp. 86–95.

[25] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson, and M. Duchrow,
“Cluster analysis of Java dependency graphs,” in Proceedings of
the 4th ACM symposium on Software visualization, ser. SoftVis ’08.
New York, NY, USA: ACM, 2008, pp. 91–94. [Online]. Available:
http://doi.acm.org/10.1145/1409720.1409735

[26] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van Wijk,
and A. van Deursen, “Understanding execution traces using massive
sequence and circular bundle views,” in Proceedings of the 15th IEEE
International Conference on Program Comprehension, ser. ICPC ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 49–58.
[Online]. Available: http://dx.doi.org/10.1109/ICPC.2007.39

[27] Y. Feng, K. Dreef, J. A. Jones, and A. van Deursen, “Hierarchical
abstraction of execution traces for program comprehension,” in
Proceedings of the 26th Conference on Program Comprehension,
ser. ICPC ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 86–96. [Online]. Available: https://doi.org/10.1145/
3196321.3196343

[28] B. Cornelissen, L. Moonen, A. van Deursen, and A. Zaidman,
“Visualizing testsuites to aid in software understanding,” in 2007 11th
European Conference on Software Maintenance and Reengineering.
Los Alamitos, CA, USA: IEEE Computer Society, mar 2007, pp.
213–222. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/CSMR.2007.54

[29] S. M. Nasehi and F. Maurer, “Unit tests as api usage examples,” in 2010
IEEE International Conference on Software Maintenance. IEEE, 2010,
pp. 1–10.

[30] N. F. Fernandez, G. W. Gundersen, A. Rahman, M. L. Grimes,
K. Rikova, P. Hornbeck, and A. Ma’ayan, “Clustergrammer, a web-based
heatmap visualization and analysis tool for high-dimensional biological
data,” Scientific data, vol. 4, p. 170151, 2017.

[31] N. Henry and J.-D. Fekete, “Matlink: Enhanced matrix visualization for
analyzing social networks,” in IFIP Conference on Human-Computer
Interaction. Springer, 2007, pp. 288–302.

[32] J. S. Yi, N. Elmqvist, and S. Lee, “Timematrix: Analyzing temporal
social networks using interactive matrix-based visualizations,” Intl. Jour-
nal of Human–Computer Interaction, vol. 26, no. 11-12, pp. 1031–1051,
2010.

[33] N. Henry, J.-D. Fekete, and M. J. McGuffin, “Nodetrix: a hybrid
visualization of social networks,” IEEE transactions on visualization
and computer graphics, vol. 13, no. 6, pp. 1302–1309, 2007.

[34] N. Elmqvist, T.-N. Do, H. Goodell, N. Henry, and J.-D. Fekete, “Zame:
Interactive large-scale graph visualization,” in 2008 IEEE Pacific Visu-
alization Symposium. IEEE, 2008, pp. 215–222.

[35] J. Abello and F. Van Ham, “Matrix zoom: A visual interface to semi-
external graphs,” in IEEE symposium on information visualization.
IEEE, 2004, pp. 183–190.

[36] A. Abuthawabeh, F. Beck, D. Zeckzer, and S. Diehl, “Finding structures
in multi-type code couplings with node-link and matrix visualizations,”
in 2013 First IEEE Working Conference on Software Visualization
(VISSOFT). IEEE, 2013, pp. 1–10.

[37] M. Ghoniem, J.-D. Fekete, and P. Castagliola, “On the readability of
graphs using node-link and matrix-based representations: a controlled
experiment and statistical analysis,” Information Visualization, vol. 4,
no. 2, pp. 114–135, 2005.

https://doi.org/10.1145/2568225.2568233
https://www.sciencedirect.com/science/article/pii/S016412120200064X
https://www.sciencedirect.com/science/article/pii/S016412120200064X
https://github.com/spideruci/tacoco
https://www.eclemma.org/jacoco/
http://dx.doi.org/10.1002/smr.414
http://doi.acm.org/10.1145/1409720.1409735
http://dx.doi.org/10.1109/ICPC.2007.39
https://doi.org/10.1145/3196321.3196343
https://doi.org/10.1145/3196321.3196343
https://doi.ieeecomputersociety.org/10.1109/CSMR.2007.54
https://doi.ieeecomputersociety.org/10.1109/CSMR.2007.54

